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LETTER TO THE EDITOR

Discussion of "Strain hardening in the moving hinge method", Int. J. Solids
Structures, Vol. 30, pp. 3475-3489 (1993).

The method expounded in this paper by Sherbourne and Lu (1993) should be described as
one involving the use of the moving plastic zone fronts and not one with moving plastic
hinges. Furthermore the significance of the work needs to be questioned. The reasons are
given below.

A stationary hinge, usually termed a plastic hinge, occurs in a rigid-perfectly plastic
material at a section where the bending moment reaches the fully plastic value for the cross
section. All the bending deformation (in the form of rotation) of the two adjacent regions
separated by the hinge is assumed to be concentrated at the plastic hinge and the neigh
bouring regions remain rigid. At a moving plastic hinge, slope continuity is essential but
curvature discontinuity is possible [see Stronge and Yu (1993)]. As the hinge moves through
the structure, the curvature of the part of the structure swept by the moving hinge is
changed. But after the passage of the hinge, no further plastic deformation occurs. In an
idealised rigid-perfectly plastic material both stationary and moving hinges satisfy the basic
requirements regarding the continuity of displacement and of internal generalised forces.
However, for a strain hardening material, a discontinuity of curvature will lead to a
discontinuity of bending moment, which results in a violation of equilibrium. Therefore, in
a strain hardening material, although a moving hinge mechanism could lead to the con
struction of a kinematically admissible displacement/strain field, it violates equilibrium at
the moving hinge. Consequently, the predictions of such a model are likely to be inaccurate.

Since the discontinuity of moments at hinges has no physical basis, the moving hinge
mechanism, as described by the authors in the strain hardening case, is in error. Rather,
when strain hardening is included, there needs to be curvature continuity across the plastic
front which, in general, delineates a zone in which the curvature changes from section to
section. Sherbourne and Lu (1993) assume regions in which the curvature is uniform at
each stage of deformation.

Wierzbicki and Bhat (1986) used the so-called moving hinge method (which again was
actually a moving plastic front of an expanding plastic zone) to model the progressive
folding of an axially compressed cylinder made of a rigid-perfectly plastic material. Using
simple statics, this model can be shown to violate the yield conditions applicable to a rigid
perfectly plastic material in that the bending moment in certain zones swept by these
"moving plastic hinges" is greater than the fully plastic bending moment.

The same can be seen to happen even more obviously in the case of the model for a
ring compressed between two wedges employed by Sherbourne and Lu (1993). The shape
of the ring so compressed depends on the material behaviour. In a ring of a strain softening
material, a collapse mechanism with four (stationary) hinges is seen. This is the kinematic
model proposed by DeRuntz and Hodge (1963) [see Fig. l(b)]. Careful experiments
described by Reddy and Reid (1980) have shown that, in rings of materials showing upper
and lower yield phenomenon such as mild steel, a "dumb bell" or a "peanut" shape is
indeed observed. The magnitude of curvature change seen at the sections on the original
loading diameter, e.g. region S\ in Fig. 2, depends upon the extent of the plateau at the
lower yield point and the strain hardening characteristics of the material. In some cases a
reversal of curvature has been observed there. In rings of materials having no well-defined
yield, such as aluminium alloys, copper, brass, etc., the region SI adjacent to the loading
wedges (or plates) merely becomes flat. A theoretical model for this deformation mechanism
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Fig. 1. Tube compressed between plates: (a) before collapse; (b) De Runtz and Hodge mode of
collapse; (c) Burton and Craig mode of collapse [from Reddy and Reid (1980)].

was proposed by Burton and Craig (1963) [see Fig. l(c)]. In this latter case, plastic bending
is more severe at the sides of the ring S3' The regions VH in Fig. l(c) at the sides undergo
no permanent change in curvature. Indeed, by intermittently annealing a ring between
stages of compression, a curvature change in the regions adjacent to the platens can be
found even in aluminium alloy or copper rings [see Fig. 2 in Reddy and Reid (1980)].

The bending moment is obviously a maximum at the point B in S3 (Fig. 2). So in a
ring of rigid-perfectly plastic material, a plastic hinge will occur at B. Hence S3 shrinks to
a point and "3 at B tends to infinity. In a strain hardening material, a plastic zone S3
develops in the region BH2, the bending moment being Mo = uyf'b/4 at H2 and increasing
to a maximum value M B (say) at B. In the plastic zone H 2B (S3), as the bending moment
varies from M oat B to M B at B (MB > Mo), the curvature also varies from l/R at H2 (if we
neglect elastic effects) to a higher value at B. Thus, taking a constant value for the curvature
in the region BH2, as the authors do, is incorrect.

If a rigid-perfectly plastic material model is considered, it can be shown that only a
stationary plastic hinge and not a plastic zone can exist at the sides [H in Figs l(b,c) or B
in Fig. 2]. In the Burton and Craig model [Fig. l(c)], a plastic hinge is required at V, the
edge of the expanding flat portion, along with the stationary plastic hinge at H. This hinge
at V is a true moving hinge. By considering either of the models for deformation shown in
Figs l(b,c), it can be shown that the exact solution for the load-eompression characteristic
of a ring compressed between flat plates is given by

where ~ is the compression of the ring.
Burton and Craig's model translated to the terminology of the paper by Sherbourne

and Lu provides S3 = 0, 03 = 0, "3 = 00, /(2 = l/R, ,,) = 0 and Sl = Rp, where p defines the
rotation at the hinge B. In a ring of a rigid-perfectly plastic material, a moving hinge can
only exist at the end of the flat region. This being the case, one fails to understand how the

Fig. 2. Moving hinge modelling [from Sherbourne and Lu (1993)].



Letter to the Editor

PI2

I
__.l.-.....;~l.

(a)

PI2

3325

Fig. 3(a). System of forces on a quadrant in the plastica model of collapse; (b) deformation of BH
[from Reid and Reddy (1978)].

moving hinge model of Sherbourne and Lu can be used to produce a characteristic which
is different from the exact solution [cf. Fig. 8 and eqn (25)] for a rigid-perfectly plastic
material. The authors criticise the so-called inverse method in which a mode ofdeformation,
guided broadly by the experimental observations, is postulated and analysed to predict the
load--eompression characteristics of a structure. This is the method used by DeRuntz and
Hodge (1963), Burton and Craig (1963) and Reid and Reddy (1978) in the analysis of a
tube or a ring compressed between flat plates, and by Reid and Bell (1982) for a "pinched"
ring. Indeed, as described above, the mechanisms of DeRuntz and Hodge and Burton and
Craig represent possible limits to the actual behaviour. In these analyses, equilibrium
considerations always govern the deformation mechanisms. In the "plastica" model of Reid
and Reddy (1978), which is shown for the sake of completeness here in Fig. 3, strain
hardening was considered only in the zones of severe plastic deformation at the sides (BH
in Fig. 3). The rigid arc BVseparates the plastic regions VC and HB. Equilibrium conditions
are satisfied at all times. Furthermore, the plastica analysis ensures that both slope and
curvature are continuous across the section at B in Fig. 3.

Instead of any considerations of equilibrium, Sherbourne and Lu use eqn (22) in their
paper to produce the shapes modelled using actual measurements. As a result, the method
appears to be a data fitting technique instead of an independent, predictive theory. This
kind of empirical equation usually depends on the material properties as well as the
geometry of the rings and so it has little significance. This defeats the predictive purpose of
the analysis. Why carry out an analysis if an experiment has to be carried out to feed the
analysis? Moreover, Sherbourne and Lu's measurements are made from imprints of the
ends of the tubes under load. This profile, particularly at the top and bottom, is affected by
anticlastic curvature effects [see Reddy and Reid (1980)), and so using these measurements
in an analysis with rigid-perfectly plastic or rigid-strain hardening materials alike should
be treated with great reservations.
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